31 research outputs found

    Decidability of Reachability for Polymorphic Systems with Arrays: A Complete Classification

    Get PDF
    AbstractMany interesting systems can be seen as having two kinds of state variables: array variables, which are mappings from one data type into another; and basic variables, which are used to control the system, to perform basic computations, and for operations involving arrays.We investigate such systems where:•the type of each basic variable is built from type variables using product and sum constructs;•the type of each array variable is B→B′, where B and B′ are types as for basic variables;•on any type variable, either no operations are available, or only the equality predicate, or only a linear-order predicate;•type variables denote arbitrary non-empty finite sets.We present a complete classification of reachability decision problems for these systems into decid- able or undecidable

    Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time

    Get PDF
    We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Br\'azdil, Jan\v{c}ar, and Ku\v{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.Comment: Corrected proof of Lemma 6.2 (thanks to Dmitry Chistikov for spotting an error in the previous proof

    The Reachability Problem for Petri Nets is Not Elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.Comment: Final version of STOC'1

    The reachability problem for Petri nets is not elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack

    An Approach to Regular Separability in Vector Addition Systems

    Full text link
    We study the problem of regular separability of languages of vector addition systems with states (VASS). It asks whether for two given VASS languages K and L, there exists a regular language R that includes K and is disjoint from L. While decidability of the problem in full generality remains an open question, there are several subclasses for which decidability has been shown: It is decidable for (i) one-dimensional VASS, (ii) VASS coverability languages, (iii) languages of integer VASS, and (iv) commutative VASS languages. We propose a general approach to deciding regular separability. We use it to decide regular separability of an arbitrary VASS language from any language in the classes (i), (ii), and (iii). This generalizes all previous results, including (iv)
    corecore